8 research outputs found

    Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection

    No full text
    International audienceWe report on the design and exploitation of a real-field laboratory demonstrator combining active polarimetric and multispectral functions. Its building blocks, including a multiwavelength pulsed optical parametric oscillator at the emission side and a hyperspectral imager with polarimetric capability at the reception side, are described. The results obtained with this demonstrator are illustrated on some examples and discussed. In particular it is found that good detection performances rely on joint use of intensity and polarimetric images, with these images exhibiting complementary signatures in most cases

    Snapshot active polarimetric and multispectral laboratory demonstrator

    No full text
    International audienceIn this article we address the design and exploitation of a real field laboratory demonstrator combining active polarimetric and multispectral modes in a single acquisition. Its buildings blocks, including a multi-wavelength pulsed optical parametric oscillator at emission side, and a hyperspectral imager with polarimetric capability at reception side, are described. The results obtained with this demonstrator are illustrated on some examples and discussed

    First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    No full text
    International audienceWe report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7  [1/Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8×10-25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9×10-24. At 55 Hz we can exclude sources with ellipticities greater than 10-5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038  kg m2

    Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    No full text
    International audienceDuring their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100  M⊙, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93  Gpc−3 yr−1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits
    corecore